16 research outputs found

    The Behavior of Epidemics under Bounded Susceptibility

    Full text link
    We investigate the sensitivity of epidemic behavior to a bounded susceptibility constraint -- susceptible nodes are infected by their neighbors via the regular SI/SIS dynamics, but subject to a cap on the infection rate. Such a constraint is motivated by modern social networks, wherein messages are broadcast to all neighbors, but attention spans are limited. Bounded susceptibility also arises in distributed computing applications with download bandwidth constraints, and in human epidemics under quarantine policies. Network epidemics have been extensively studied in literature; prior work characterizes the graph structures required to ensure fast spreading under the SI dynamics, and long lifetime under the SIS dynamics. In particular, these conditions turn out to be meaningful for two classes of networks of practical relevance -- dense, uniform (i.e., clique-like) graphs, and sparse, structured (i.e., star-like) graphs. We show that bounded susceptibility has a surprising impact on epidemic behavior in these graph families. For the SI dynamics, bounded susceptibility has no effect on star-like networks, but dramatically alters the spreading time in clique-like networks. In contrast, for the SIS dynamics, clique-like networks are unaffected, but star-like networks exhibit a sharp change in extinction times under bounded susceptibility. Our findings are useful for the design of disease-resistant networks and infrastructure networks. More generally, they show that results for existing epidemic models are sensitive to modeling assumptions in non-intuitive ways, and suggest caution in directly using these as guidelines for real systems

    Modeling the effect of transmission errors on TCP controlled transfers over infrastructure 802.11 wireless LANs

    No full text
    There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations

    Spectrum Sharing and Scheduling in D2D-Enabled Dense Cellular Networks

    No full text
    Abstract-We study device-to-device (D2D) enabled hierarchical cellular networks consisting of a macro base station (BS), a dense network of access nodes (ANs) and mobile users, where spectrum is shared between cellular traffic and D2D traffic. Further, (the receivers of) mobile users dynamically time-share between the cellular and D2D networks. We develop algorithms for channel allocation and mobile-user receiver mode selection (choosing which network to participate in) with the objectives of minimizing delay for cellular traffic, and capacity maximization for D2D traffic. Our proposed solution takes advantage of the unique features offered by large and densified cellular networks such as multi-point connectivity, channel diversity, spatial reuse and load distribution. Given a BS-to-mobile delay requirement of d + 1 time-slots, we show that by appropriately scheduling channels and receiver modes, we can (with exponentially high probability) guarantee that cellular traffic reaches its intended destination within d timeslots. By leveraging spatial channel reuse, we show that this is achieved by utilizing a vanishingly small fraction of the available spatial capacity. Further, in the presence of delay-constrained cellular traffic, our scheduling algorithm guarantees D2D traffic can achieve rates within a (1 − 1 d ) factor of the corresponding achievable rates without cellular traffic
    corecore